Периодическая система элементов Менделеева - Алюминий
Al | 13 | Алюминий |
|||||||
to кип. (oС) | 660,37 | Степ.окис. | +3 (+1 +2) | ||||||
26,98154 |
to плав.(oС) | 660,37 | Плотность | 2702 | |||||
3s23p1 | ОЭО | 1,47 | в зем. коре | 8,13 % | |||||
Древний историк Плиний Старший рассказывает об интересном событии, которое произошло почти два тысячелетия назад. Однажды к римскому императору Тиберию пришел незнакомец. В дар императору он преподнес изготовленную им чашу из блестящего, как серебро, но чрезвычайно легкого металла. Мастер поведал, что этот никому не известный металл он сумел получить из глинистой земли. Должно быть, чувство благодарности редко обременяло Тиберия да и правителем он был недальновидным. Боясь, что новый металл с его прекрасными свойствами обесценит хранившиеся в казне золото и серебро, он отрубил изобретателю голову, а его мастерскую разрушил, чтобы никому не повадно было заниматься производством «опасного» металла.
Быль это или легенда - трудно сказать. Но так или иначе «опасность» миновала и, к сожалению, надолго. Лишь в XVI веке, т. е. спустя примерно полторы тысячи лет, в историю алюминия была вписана новая страница. Это сделал талантливый немецкий врач и естествоиспытатель Парацельс Филипп Ауреол Теофраст Бомбаст фон Гогенгейм.
Исследуя различные вещества и минералы, в том числе квасцы, Парацельс установил, что они «есть соль некоторой квасцовой земли», в состав которой входит окись неизвестного металла, впоследствии названная глиноземом.
Квасцы, заинтересовавшие Парацельса, были известны с давних времен. По свидетельству греческого историка Геродота, жившего в V веке до н. э., древние народы применяли при крашении тканей для закрепления их цвета минеральную породу, которую они называли «алюмен», т. е. «свяжущая». Этой породой и были квасцы.
Примерно к VIII—IX векам относятся первые упоминания об изготовлении квасцов в Древней Руси, где их также использовали для окраски тканей и приготовления сафьяновых кож. В средние века в Европе уже действовало несколько заводов для производства квасцов. В 1754 году немецкий химик Маргграф сумел выделить «квасцовую землю», о которой 200 лет до этого писал Парацельс. Прошло еще несколько десятков лет, прежде чем англичанин Дэви попытался получить металл, скрывающийся в квасцах. В 1807 году ему удалось электролизом щелочей открыть натрий и калий, но разложить с помощью электрического тока глинозем он так и не сумел. Подобные же попытки предпринял спустя несколько лет швед Берцелиус, но и его работы не увенчались успехом. Несмотря на это, ученые все же решили дать «неподдающемуся» металлу имя: сначала Берцелиус назвал его алюмием, а затем Дэви изменил алюмий на алюминий.
Первым, кому удалось, подобно неизвестному мастеру Древнего Рима, получить металлический алюминий, был датский ученый Эрстед. В 1825 году в одном из химических журналов он опубликовал свою статью, в которой писал, что в результате проведенных им опытов образовался «кусок металла, с цветом и блеском, несколько похожим на олово». Однако журнал этот был не очень известен, и сообщение Эрстеда осталось почти незамеченным в научном мире. Да и сам ученый, поглощенный работами по электромагнетизму, не придавал своему открытию большого значения.
Спустя два года в Копенгаген к Эрстеду приехал молодой, но уже известный немецкий химик Вёлер. Эрстед сообщил ему, что не намерен продолжать опыты по получению алюминия. Вернувшись в Германию, Вёлер немедленно занялся этой проблемой, весьма заинтересовавшей его, и уже в конце 1827 года опубликовал свой метод получения нового металла. Правда, метод Вёлера позволял выделять алюминий лишь в виде зерен величиной не более булавочной головки, но ученый продолжал эксперименты до тех пор, пока не сумел, наконец, разработать способ Получения алюминия в виде компактной массы. На это ему потребовалось ... 18 лет.
К тому времени новый металл уже успел завоевать популярность и, поскольку получали его в мизерных количествах, цены на него превышали цены на золото, да и достать его было делом не простым.
Немудрено, что когда один из европейских монархов приобрел в личное пользование камзол с алюминиевыми пуговицами, он начал свысока посматривать на других правителей, которым такая роскошь была не по карману. Тем же не оставалось ничего другого, как только завидовать счастливому обладателю редчайших пуговиц и с тихой грустью дожидаться лучших времен.
К их великой радости ждать пришлось недолго: уже в 1855 году на Всемирной выставке в Париже было представлено «серебро из глины», которое произвело большую сенсацию. Это были пластины и слитки алюминия, полученные французским ученым и промышленником Сент-Клер Девилем.
Появлению этих экспонатов предшествовали следующие события. Императором Франции в то время был Наполеон III - «маленький племянник великого дяди», как называли его тогда. Большой любитель пустить пыль в глаза, он устроил однажды банкет, на котором члены монаршей семьи и наиболее почетные гости были удостоены чести есть алюминиевыми ложками и вилками. Гостям же попроще пришлось пользоваться обычными (для императорских банкетов, разумеется) золотыми и серебряными приборами. Конечно, было обидно до слез, и кусок не лез в горло, но что поделаешь, если даже император не мог тогда обеспечить каждого гостя алюминием по потребности.
Вскоре в голове Наполеона III созрел дерзновенный проект, который сулил славу и почет, но, главное, должен был заставить государей других стран позеленеть от зависти: император решил снабдить солдат своей армии доспехами из алюминия. Он предоставил Сент Клер Девилю крупные средства, чтобы тот изыскал способ получения алюминия в больших количествах. Девиль, положив в основу своих экспериментов метод Вёлера, сумел разработать соответствующую технологию, но металл, полученный им, продолжал оставаться весьма дорогим.
Именно поэтому французским солдатам так и не довелось примерить обещанные доспехи, но о своей личной охране император позаботился: его кирасиры начали щеголять в новеньких алюминиевых кирасах.
К этому периоду и относится появление «серебра Девиля» в качестве экспоната на Всемирной выставке. Быть может, ее устроители и отнесли алюминий к металлам широкого потребления, но, увы, от этого он не стал доступнее. Правда, уже тогда передовые люди понимали, что пуговицы и кирасы - лишь незначительный эпизод в деятельности алюминия. Впервые увидев алюминиевые изделия, Н. Г. Чернышевский с восторгом сказал: «Этому металлу суждено великое будущее' Перед вами, друзья, металл социализма». В его романе "Что делать?», вышедшем в 1863 году, есть такие строки: "...Какая легкая архитектура этого внутреннего дома, какие маленькие простенки между окнами, - окна огромные, широкие, во всю вышину этажей... Но какие эти полы и потолки? Из чего эти двери и рамы окон? Что это такое? Серебро? Платина?.. Ах, знаю теперь, Саша показывал мне такую дощечку, она была легка, как стекло, и теперь уже есть такие серьги, броши; да, Саша говорил, что рано или поздно алюминий заменит собой дерево, может быть и камень. Но как же все это богато. Везде алюминий и алюминий... Вот в этом зале половина пола открыта, тут и видно, что он из алюминия...».
Но в тот период, когда писались эти пророческие строки, алюминий по-прежнему оставался главным образом ювелирным металлом, интересно, что даже в 1889 году, когда Д, И. Менделеев находился в Лондоне, ему в знак признания его выдающихся заслуг в развитии химии был преподнесен ценный подарок - весы, сделанные из золота и алюминия.
Сент-Клер Девиль развил бурную деятельность. В местечке Ла-Гласьер он построил первый в мире алюминиевый завод. Однако в процессе плавки завод выделял много вредных газов, которые загрязняли атмосферу Ла-Гласьера. Местные жители, дорожившие здоровьем, не пожелали жертвовать и технического прогресса и обратились с жалобой к правительству. Завод пришлось перенести сначала в предместье Парижа Нантер, а позднее на юг Франции.
К этому времени для многих ученых стало ясно, что, несмотря на все старания Девиля, его метод не имеет перспектгив. Химики разных стран продолжали поиски. В 1865 году известный русский ученый Н. Н. Бекетов предложил интересный способ, который быстро нашел применение на алюминиевых заводах Франции (в Руане) и Германии (в Гмелинген6е близ Бремена).
Важной вехой в истории алюминия стал V1886 год, когда независимо друг от друга американский студент Холл и французский инженер Эру разработали электролитический способ производства этого металла. Идея была не нова: ещё в 1854 году немецкий ученый Бунзен высказал мысль о получении алюминия электролизом его солей. Но прошло более тридцати лет, прежде чем эта мысль получила практическое воплощение. Поскольку электролитический способ требовал большого количества энергии, первый в Европг завод для производства алюминия электролизом был построен в Нейгаузене (Швейцария) близ Рейнского водопада - дешевого источника тока.
И сегодня, спустя без малого сто лет, без алектролиза немыслимо получение алюминия. Именно это обстоятельство и заставляет ученых ломать голову над весьма загадочным фактом. В Китае есть гробница известного полководца Чжоу-Чжу, умершего в начале III века. Сравнительно недавно некоторые элементы орнамента этой гробницы были подвергнуты спектральному анализу. Результат оказался настолько неожиданным, что анализ пришлось несколько раз повторить. И каждый раз беспристрастный спектр неопровержимо свидетельствовал о том, что сплав, из которого древние мастера выполнили орнамент, содержит 85% алюминия. Но каким же образом удалось получить в III веке этот металл? Ведь с электричеством человек тогда был знаком разве что по молниям. а они вряд ли соглашались» принять участие в электролитическом процессе. Значит, остается предположить, что в те далекие времена существовал какой-то другой способ получения алюминия, к сожалению, затерявшийся в веках.
В конце 80-х годов прошлого столетия в «биографию» алюминия была вписана еще одна очень важная страница: работавший в России австрийский химик К. И. Байер создал и успешно применил в заводских условиях оригинальную технологию получения глинозема - основного промышленного сырья для производства алюминия. Способ Байера, быстро получивший признание во всем мире, сохранил свое большое значение до наших дней.
В эти г оды производство алюминия резко возросло и, как следствие, значительно снизились цены на этот металл, еще не так давно считавшийся драгоценным. Если в 1854 году 1 килограмм алюминия стоил 1200 рублей, то уже к концу XIX века цена на неги упала до 1 рубля. Разумеется, для ювелиров он уже не представлял никакого интереса, зато сразу приковал к себе внимание промышленного мира, находившегося в преддверии больших событий: начинало бурно развиваться машиностроение, становилась на ноги автомобильная промышленность и. что особенно важно, вот-вот должна была сделать первые шаги авиация, где алюминию предстояло сыграть важнейшую роль.
В 1893 году в Москве вышла книга инженера Н. Жукова «Алюминий и его металлургия», в которой автор писал: «Алюминий призван занять выдающееся место в технике и заместить собой, если не все, то многие из обыденных металлов...» Для такого утверждения имелись основания: ведь уже тогда были известны замечательные свойства «серебра из глины». Алюминий один из самых легких металлов: он в 3 с лишним раза легче меди и в 2,9 раза легче железа. По теплопроводности и электропроводности он уступает лишь серебру, золоту и меди. В обычных условиях этот металл обладает достаточной химической стойкостью. Высокая пластичность алюминия позволяет прокатывать его в фольгу толщиной до 3 микрон, вытягивать в тончайшую, как паутина, проволоку: при длине 1000 метров она весит всего 27 граммов и умещается в спичечной коробке. И лишь его прочностные характеристики оставляют желать лучшего. Это обстоятельство и побудило ученых задуматься над тем, как сделать алюминий прочнее, сохранив все его полезные качества.
Издавна было известно, что прочность многих сплавов зачастую гораздо выше, чем чистых металлов, входящих в их состав. Вот почему металлурги и занялись поисками тех «компаньонов», которые, вступив в союз с алюминием, помогли бы ему «окрепнуть». Вскоре пришел успех. Как не раз бывало в истории науки, едва ли не решающую роль при этом сыграли случайные обстоятельства. Впрочем, расскажем все по порядку.
Однажды (это было в начале XX века) немецкий химик Вильм приготовил сплав, в который, помимо алюминия, входили различные добавки: медь, магнии, марганец. Прочность этого сплава была выше, чем у чистого алюминия, но Вильм чувствовал, что сплав можно еще более упрочнить, подвергнув его закалке. Ученый нагрел несколько образцов сплава примерно до 600°С, а затем опустил их в воду. Закалка заметно повысила прочность сплава, но, поскольку результаты испытаний различных образцов оказались неоднородными, Вильм усомнился в исправности прибора и точности измерений.
Несколько дней исследователь тщательно выверял прибор. Забытые им на время образцы лежали без дела на столе, и к тому моменту, когда прибор был вновь готов к работе, они оказались уже не только закаленными, но и запыленными. Вильм продолжил испытания и не поверил своим глазам: прибор показывал, что прочность образцов возросла чуть ли не вдвое.
Вновь и вновь повторял ученый свои опыты и каждый раз убеждался, что его сплав после закалки продолжает в течение 5-7 дней становиться все прочнее и прочнее. Так было открыто интереснейшее явление - естественное старение алюминиевых сплавов после закалки.
Сам Вильм не знал, что происходит с металлом в процессе старения, но, подобрав опытным путем оптимальный состав сплава и режим термической обработки он получил патент и вскоре продал его одной немецкой фирме, которая в 1911 году выпустила первую партию нового сплава, названного дюралюминием (Дюрен - город, где было начато промышленное производство сплава). Позже этот сплав стали называть дуралюминомю.
В 1919 году появились первые самолеты из дуралюмина. С тех пор 1 алюминий навсегда связал свою судьбу с авиацией. Он по праву заслужил репутацию «крылатого металла» Превратив примитивные деревянные «этажерки» в гигантские воздушные лайнеры. Но в те годы его еще не хватало, и многие самолеты, главным образом легких типов, продолжали изготовлять из дерева.
В нашей стране производством алюминиевых сплавов занимался тогда лишь Кольчугинский завод по обработке цветных металлов, который выпускал в небольших количествах кольчугалюминий - сплав, по составу и свойствам сходный с дуралюмином. На повестку дня стал вопрос о создании мощной алюминиевой промышленности.
В начале 1929 года в Ленинграде на заводе «Красный Выборжец» были проведены опыты по получению алюминия. Руководил ими Федотьев - замечательный ученый, с именем которого связаны многие страницы истории «крылатого металла».
27 марта 1929 года удалось получить первые 8 килограммов металла. «Этот момент, - писал впоследствии П. П. Федотьев, - можно считать возникновением
производства алюминия в СССР на волховской энергии и целиком из материалов собственного приготовления».
Завод по производству алюминия |
В ленинградской печати отмечалось тогда, что «первый слиток алюминия, представляющий музейную ценность, должен быть сохранен как памятник одного из крупнейших достижений советской техники». Образцы алюминия, полученного в дальнейшем на «Красном Выборжце», и изделия из него были преподнесены от трудящихся Ленинграда V Всесоюзному съезду Советов.
Успешное проведение этих опытов позволило приступить к сооружению Волховского и Днепровского алюминиевых заводов. В 1932 году вступил в строй первый из них, а спустя год - второй.
В эти же годы значительные природные запасы алюминиевых руд были обнаружены на Урале. Любопытна предыстория этого открытия. В 1931 году молодой геолог Н. А. Каржавин в музее одного из уральских рудников обратил внимание на экспонат, считавшийся железной рудой с низким содержанием железа. Геолога поразило сходство этого образца с бокситами - глинистой горной породой, богатой алюминием. Подвергнув минерал анализу, он убедился, что «бедная железная руда» является отличнейшим алюминиевым сырьем. Там, где был найден этот образец, начались геологические поиски, которые вскоре увенчались успехом.
На базе найденных месторождений был построен Уральский алюминиевый завод, а спустя несколько лет (уже в годы войны) -Богословский, Который выдал свою первую продукцию в исторический День Победы - 9 мая 1945 года.
Сейчас в нашей стране уже многие предприятия выпускают «крылатый металл», но нужда в нем продолжает расти. Конечно, по-прежнему основной потребитель алюминия - авиация. Алюминий занимает первое место среди металлов, применяемых в самолето и ракетостроении. От 2/3 до 3/4 сухого веса пассажирского самолета и от 1/20 до 1/2 сухого веса ракеты— вот его доля в летающих конструкциях.
Из алюминиевых сплавов была изготовлена оболочка первого советского искусственного спутника Земли. Оболочка корпусов американских ракет «Авангард» и «Титан», применявшихся для запуска на орбиту первых американских спутников, а позднее и космических кораблей, также была выполнена из сплавов алюминия. Из них делают различные детали космической аппаратуры — кронштейны, крепления, шасси, футляры и корпуса для многих инструментов и приборов.
В 1960 году в США запустили спутник «Эхо-1», предназначенный для отражения радиосигналов. Это был огромный, диаметром около 30 метров шар, представляющий собой пластическую пленку, покрытую тончайшим слоем алюминия. Несмотря на столь внушительные габариты, этот спутник весил всего 62 килограмма.
Фольга из чистейшего алюминия служила флуоресцирующим экраном, установленным на одном из спутников для исследования испускаемых Солнцем заряженных частиц. Когда американские космонавты Нейл Армстронг и Эдвин Олдрин высадились на Луну, они расстелили на ее поверхности лист такой же фольги и в течение двух часов подвергали фольгу воздействию газов, излучаемых Солнцем, Покидая Луну, космонавты захватили с собой эту фольгу и образцы лунных пород, которые они упаковали в специальные алюминиевые коробки.
Алюминий принимает участие в овладении не только космическими высотами, но и морскими безднами. Несколько лет назад в США была создана океанографическая подводная лодка «Алюминаут», которая может погружаться на глубину 4600 метров. Новый сверхглубинный корабль построен не из стали, как обычно принято, а из алюминия.
Во Франции спущен на воду громадный океанский лайнер водоизмещением свыше 50 тысяч тонн, длиной 315 метров, способный принять на борт две тысячи пассажиров. Корпус, трубы, шлюпки и даже мебель этого колосса выполнены из алюминия.
Область применения алюминия постоянно расширяется. В послевоенные годы в США был составлен список изготовляемых из него изделий. В списке оказалось примерно две тысячи наименований.
Важный потребитель этого металла - электротехническая промышленность. Провода высоковольтных линий передач, обмотки моторов и трансформаторов, кабели, цоколи ламп, конденсаторы и многие другие изделия делают из алюминия.
Желанный гость он и на транспорте. Сейчас в нашей стране ведутся работы по созданию железнодорожного суперэкспресса. «Русская тройка» - так поэтично назван этот поезд - своими формами напоминает фюзеляж современного самолета. Да и помчится он со скоростью взлетающего «Ту». Конструкторы предложили изготовить кузов экспресса из алюминия. Опытный кузов уже прошел испытания: его сжимали с силой в 200 тонн, подвергали сильнейшей вибрационной тряске и другим «экзекуциям», но металл все выдержал. Недалек тот день, когда «Русская тройка» стремительно понесется по нашим необъятным просторам.
Алюминий обладает высокой коррозионной стойкостью. Этим он обязан тончайшей, толщиной 0,0001 миллиметра пленке, которая возникает на его поверхности и служит в дальнейшем броней, защищающей металл от кислорода. Не будь этой пленки-брони, алюминий вспыхивал бы даже на воздухе и сгорал ослепительным пламенем. Спасительный панцирь позволяет алюминиевым деталям служить десятки лет даже в такой вредной для «здоровья» металлов отрасли, как химическая промышленность.
Ученые установили, что алюминий обладает еще одним ценным свойством: он не разрушает витамины. Поэтому из него изготовляют аппаратуру для маслобойной, сахарной, кондитерской, пивоваренной промышленности. Прочные позиции завоевал этот металл и в строительстве. Еще в 1890 году в одном из американских городов алюминий был впервые применен при постройке жилого дома. Спустя полстолетия все алюминиевые детали находились в прекрасном состоянии. Первая алюминиевая крыша, поставленная в 1897 году, стоит без ремонта по сей день.
На территории Московского Кремля из алюминия и пластмасс сооружен величественный Дворец съездов. В 1958 году на Всемирной выставке в Брюсселе из стекла и алюминия был построен поражавший красотой павильон Советского Союза. Мосты, здания, гидротехнические объекты, ангары - везде находит применение чудесный легкий металл.
Металлурги широко используют алюминий для удаления из стали кислорода. В качестве основного компонента алюминиевая крупка входит в состав термитных смесей, применяемых при алюминотермических процессах получения многих сплавов.
Алюминий можно встретить и в коллекциях филателистов: в 1955 году в Венгрии была выпущена необычная почтовая марка, отпечатанная на алюминиевой фольге толщиной 0,009 миллиметра. Позднее такие марки появились и в других странах.
Уже создана алюминированная (покрытая тончайшим слоем алюминия) ткань, которая обладает замечательным свойством: она «умеет» и согревать, и охлаждать. Занавеси на окнах из этой ткани, если их повесить металлом наружу, пропустят световые лучи, но отразят тепловые - в жаркий летний день в комнате будет прохладно. Зимой же занавеси следует перевернуть: тогда они будут возвращать тепло в помещение. В плаще из такой ткани можно не бояться ни жары и ни холода. Чтобы спастись от палящих солнечных лучей, плащ нужно будет носить металлом наружу. Если же на улице похолодает - выверните его наизнанку, и металл возвратит тепло вашему телу. Чехословацкая промышленность начала выпускать очень удобные алюминированные одеяла, которые одинаково хороши и в теплых, и в прохладных помещениях. К тому же весят они всего 55 граммов и в свернутом виде легко умещаются в футляре размером не более обычного портсигара.
Можно не сомневаться, что геологи, туристы, рыбаки — словом, все те, кого опаляет солнце и овевают ветры, по достоинству оценят куртки и палатки из такой ткани. В жарких краях большим спросом будут пользоваться «алюминиевые» тюбетейки, панамы, халаты, зонтики. Металлизированная одежда сделает профессию сталевара менее горячей. Поможет она пожарным в их тяжелой борьбе с огнем.
В последнее время ученые и инженеры большое внимание уделяют созданию совершенно новых материалов - пенометаллов. Уже разработана технология получения пеноалюминия - первенца в этом замечательном семействе. Новый материал поразительно легок: 1 кубический сантиметр некоторых видов пеноалюминия весит всего 0,19 грамма. Пробка, всегда служившая эталоном легкости, не в состоянии конкурировать с этим материалом: она на 25—30% тяжелее. Вслед за пеноалюминием будут созданы пенобериллий, пенотитан и многие другие удивительные материалы.
...Известный писатель-фантаст Герберт Уэллс в своем романе «Война миров», созданном на рубеже XIX и XX веков, описывает машину, с помощью которой марсиане производили алюминий: «От заката солнца до появления звезд эта ловкая машина изготовила не менее сотни полос алюминия непосредственно из глины».
Один из американских исследователей космоса в те годы, когда наше знакомство с Луной было лишь визуальным, предложил любопытную гипотезу. Ученый считал, что на каждом гектаре лунной поверхности можно встретить до 200 тонн чистого алюминия. Он высказывал соображение, что Луна является как бы гигантским природным заводом, в котором так называемый «солнечный ветер» (поток излучаемых Солнцем протонов) превращает руды железа, магния, алюминия в чистые металлы. Пока эта гипотеза не подтвердилась, тем не менее, как показал анализ образцов лунного грунта, доставленных американскими космонавтами и советскими автоматическими станциями, содержание в нем окиси алюминия довольно высокое — примерно 15 %.
Стало быть, можно считать, что на Марсе и на Луне «алюминиевая проблема» решена. А как обстоит дело на Земле? Что ж, пожалуй, и здесь все благополучно. Хотя на нашей планете нет пока машин, подобных марсианским, и на поверхности Земли алюминий не валяется тоннами, все же землянам жаловаться грех: природа щедро позаботилась о том, чтобы люди не испытывали нужды в этом чудесном металле. По содержанию в земной коре алюминий уступает лишь кислороду и кремнию, значительно превосходя все металлы.
Итак, алюминиевым сырьем мы обеспечены. Создать же оригинальные агрегаты, усовершенствовать способы получения «крылатого металла», найти ему новые области применения - это забота инженеров и ученых.